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Overview 

1.  Brief review of the NWS HEFS 
•  Two approaches to generating ensembles 
•  “Bottom-up” (ESP) vs. “top down” (HMOS) 

2.  Verification of streamflow ensembles 
•  Techniques and metrics 
•  Ensemble Verification System (EVS) 

3.  Example: ESP-GFS from CNRFC 
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Pros and cons of “ESP” 

Pros 
•  Knowledge of uncertainty sources 
•  Can lead to targeted improvements 
•  Dynamical propagation of uncertainty 

Cons 
•  Complex and time-consuming 
•  Always residual bias (need post-processing) 
•  Manual intervention is difficult (MODs) 
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Pros and cons of HMOS 

Pros 
•  Simple statistical technique 
•  Produces reliable ensemble forecasts 
•  Uses single-valued (e.g. MOD’ed) forecasts 

Cons 
•  Requires statistical assumptions 
•  Benefits are often short-lived (correlation) 
•  Lumped treatment (no source identification) 
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•  Pre-Processor  
•  Post-Processor  
•  HMOS 

•  Data Assimilation 

Status of X(H)EFS testing 
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2. Verification of streamflow 
ensembles 
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A “good” flow forecast is..? 

Statistical aspects 
•  Unbiased (many types of bias….) 
•  Sharp (doesn’t say “everything” possible) 
•  Skilful relative to baseline (e.g. climatology) 

User aspects (application dependent) 
•  Sharp 
•  Warns correctly (bias may not matter) 
•  Timely and cost effective 
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Distribution-oriented verification 
•  Q is streamflow, a random variable.  
•  Consider a discrete event (e.g. flood): {Q > qv}.   
•  Forecast (y) and observe (x) many flood events.  

How good are our forecasts for {Q>qv}? 
•  Joint distribution of forecasts and observations 
•                                  “calibration-refinement”  
•                                  “likelihood-base-rate” 

Statistical aspects 

f(x,y) = a(x|y) · b(y) 
f(x,y) = c(y|x) · d(x) 
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Calibration-refinement: a(x|y)·b(y) 
•  Reliable if (e.g.): 
•  “When            , should observe 20% of time” 
•  Sharp if: 
•  “Maximize sharpness subject to reliability” 
Likelihood-base-rate: c(y|x)·d(x)  
•  Discriminatory if (e.g.): 

•  “Forecasts easily separate flood from no flood” 

(Some) attributes of quality 
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1.  Exploratory metrics (plots of pairs) 
2.  Lumped metrics or ‘scores’ 
•  Lumps all quality attributes (i.e. overall error) 
•  Often lumped over many discrete events 
•  Include skill scores (performance over baseline) 

3.  Attribute-specific metrics 
•  Reliability Diagram (reliability and sharpness) 
•  ROC curve (event discrimination) 

(Some) quality metrics 
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Forecast:  
FY(q)=Pr[Y ≤q] 

Observed:  
FX(q)=Pr[X≤q] 

•  Then average across 
  multiple forecasts 

•  Small scores = better 
•  Note quadratic form: 
-  can decompose 
-   extremes count less    

Lumped metric: Mean CRPS 
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Attribute: rel. diagram 
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The Ensemble Verification 
System (EVS) 



The EVS 
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Java-based tool 
•  GUI and command line.  GUI is structured…. 

1.  Verification (at specific locations) 
•  Add locations, data sources, metrics etc. 

2.  Aggregation (across locations) 
•  Compute aggregate performance 

3.  Output (graphical and numerical) 
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Metrics 

Basic params. of selected metric 

Details of selected metric. 
Navigation 

Three stages (tabbed panes) 
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3. Example application 
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N. Fork, American (NFDC1) 

13 NWS River  
Forecast Centers 

CNRFC 

NFDC1 
NFDC1: dam inflow. 
Lies on upslope of  
Sierra Nevadas. 
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Streamflow ensemble forecasts 
•  Ensemble Streamflow Prediction system 
•  NWS RFS (SAC) w/ precip./temp. ensembles 
•  Hindcasts of mean daily flow 1979-2002 
•  Forecast lead times 1-14 days ahead 
•  NWS RFS (SAC) is well-calibrated at NFDC1 

Observed daily flows 
•  USGS daily observed stage 
•  Converted to discharge using S-D relation 

Data available (NFDC1) 



Box plot of flow errors (day 1) 
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Observed daily total precipitation [mm] 
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Lumped error statistics 
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Tests of 
ensemble  
mean 

Lumped 
error in 
probability 



Reliability 
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Day 1 (>50th%): 
sharp, but a  
little unreliable 
(contrast  
day 14). 

No initial  
condition 
uncertainty 
(all forcing). 

Day 14 (>99th%): 
forecasts 
remain 
reasonably  
reliable, but  
note 99% =  
only 210 CMS. 

Also note  
sample size. 



Next steps 
To make EVS widely used (beyond NWS) 
•  Public download available (see next slide)  
•  Published in EM&S (others on apps.) 

Ongoing research (two examples) 
1)  Verification of severe/rare events 
•  Will benefit from new GEFS hindcasts 
2)   Detailed error source analysis 
•  Hydrograph timing vs. magnitude errors 

(e.g. Cross-Wavelet Transform) 
27 
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Full download; 
user’s manual (100 pp.);  
source code; test data; 
developer documentation 
etc. 

Relevant published material. 

www.nws.noaa.gov/oh/evs.html 

28 

www.weather.gov/oh/XEFS/ 
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Additional slides 
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Metric name Quality tested Discrete events? Detail 

Mean error Ensemble mean No Lowest 

RMSE Ensemble mean No Lowest 

Correlation coefficient Ensemble mean No Lowest 

Brier Score Lumped error score Yes Low 

Brier Skill Score Lumped error score vs. reference Yes Low 

Mean CRPS Lumped error score No Low 

Mean CRPS reliability Lumped reliability score No Low 

Mean CRPS resolution Lumped resolution score No Low 

CRPSS Lumped error score vs. reference No Low 

ROC score Lumped discrimination score Yes Low 

Mean error in prob. Reliability (unconditional bias) No Low 

Spread-bias diagram Reliability (conditional bias) No High 

Reliability diagram Reliability (conditional bias) Yes High 

ROC diagram Discrimination Yes High 

Modified box plots Error visualization No Highest 

Verification metrics 
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Metrics 

Basic params. of selected metric 

Details of selected metric. 
Navigation 

Three stages (tabbed panes) 
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Locations 

Properties of selected location 

Data sources 

Output data 

Verification parameters 
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Aggregation units  

Common properties of discrete locations 

Verification units  
(discrete locations) 

Output data location 
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Lead times available 

Verification / Aggregation units  

Metrics for selected unit 

Output options 


